
Idris
A language with dependent types

Alejandro Gómez-Londoño

EAFIT University

31th March, 2014

What is Idris

“What if Haskell had full dependent types?” 1

1Edwin Brady (2013). Idris, a general-purpose dependently typed
programming language: Design and implementation. Journal of Functional
Programming, 23, pp 552-593.

Idris features

Full dependent types

Type classes

where clauses, do notation,let bindings

Monad comprehensions

Totality checking

Cumulative universes

Tactic based theorem proving

Simple foreign function interface (to C)

Idris
Basic Types

Z : Nat

50 : Integer

1.23 : Float

True : Bool

’a’ : Char

"foo" : String

[1,2,3] : List Integer

[1,2,3] : Vect 3 Integer

Idris
Basic Types

Z : Nat

50 : Integer

1.23 : Float

True : Bool

’a’ : Char

"foo" : String

[1,2,3] : List Integer

[1,2,3] : Vect 3 Integer

Idris
Basic Types

Z : Nat

50 : Integer

1.23 : Float

True : Bool

’a’ : Char

"foo" : String

[1,2,3] : List Integer

[1,2,3] : Vect 3 Integer

Idris
Data Types1

data Nat = Z | S Nat

data Bool = True | False

infixr 10 ::

data List a = Nil | (::) a (List a)

record Person : Type where

MkPerson : (name : String) ->

(age : Int) -> Person

1Programming in Idris: a tutorial, Edwin Brady January 2012

Idris
Data Types1

data Nat = Z | S Nat

data Bool = True | False

infixr 10 ::

data List a = Nil | (::) a (List a)

record Person : Type where

MkPerson : (name : String) ->

(age : Int) -> Person

1Programming in Idris: a tutorial, Edwin Brady January 2012

Idris
Data Types1

data Nat = Z | S Nat

data Bool = True | False

infixr 10 ::

data List a = Nil | (::) a (List a)

record Person : Type where

MkPerson : (name : String) ->

(age : Int) -> Person

1Programming in Idris: a tutorial, Edwin Brady January 2012

Idris
Data Types1

data Nat = Z | S Nat

data Bool = True | False

infixr 10 ::

data List a = Nil | (::) a (List a)

record Person : Type where

MkPerson : (name : String) ->

(age : Int) -> Person

1Programming in Idris: a tutorial, Edwin Brady January 2012

Idris
functions1

plus : Nat -> Nat -> Nat

plus Z y = y

plus (S k) y = S (plus k y)

mult : Nat -> Nat -> Nat

mult Z y = Z

mult (S k) y = plus y (mult k y)

fact : Nat -> Nat

fact Z = 1

fact (S k) = (S k)*(fact k)

1Programming in Idris: a tutorial, Edwin Brady January 2012

Idris
functions1

plus : Nat -> Nat -> Nat

plus Z y = y

plus (S k) y = S (plus k y)

mult : Nat -> Nat -> Nat

mult Z y = Z

mult (S k) y = plus y (mult k y)

fact : Nat -> Nat

fact Z = 1

fact (S k) = (S k)*(fact k)

1Programming in Idris: a tutorial, Edwin Brady January 2012

Idris
functions1

plus : Nat -> Nat -> Nat

plus Z y = y

plus (S k) y = S (plus k y)

mult : Nat -> Nat -> Nat

mult Z y = Z

mult (S k) y = plus y (mult k y)

fact : Nat -> Nat

fact Z = 1

fact (S k) = (S k)*(fact k)

1Programming in Idris: a tutorial, Edwin Brady January 2012

Idris
do,where,let1

mirror : List a -> List a

mirror xs = let xs ' = reverse xs in

xs ++ xs '

even : Nat -> Bool

even Z = True

even (S k) = odd k where

odd Z = False

odd (S k) = even k

greet : IO ()

greet = do putStrLn "What is your name? "

name <- getLine

putStrLn ("Hello " ++ name)

1Programming in Idris: a tutorial, Edwin Brady January 2012

Idris
do,where,let1

mirror : List a -> List a

mirror xs = let xs ' = reverse xs in

xs ++ xs '

even : Nat -> Bool

even Z = True

even (S k) = odd k where

odd Z = False

odd (S k) = even k

greet : IO ()

greet = do putStrLn "What is your name? "

name <- getLine

putStrLn ("Hello " ++ name)

1Programming in Idris: a tutorial, Edwin Brady January 2012

Idris
do,where,let1

mirror : List a -> List a

mirror xs = let xs ' = reverse xs in

xs ++ xs '

even : Nat -> Bool

even Z = True

even (S k) = odd k where

odd Z = False

odd (S k) = even k

greet : IO ()

greet = do putStrLn "What is your name? "

name <- getLine

putStrLn ("Hello " ++ name)

1Programming in Idris: a tutorial, Edwin Brady January 2012

Dependent Types
Definition

In conventional programming languages, there is a
clear distinction between types and values...

In a language with dependent types, however, the
distinction is less clear. Dependent types allow types to
“depend” on values - in other words, types are a first
class language construct and can be manipulated like any
other value.1

1Programming in Idris: a tutorial, Edwin Brady January 2012

Dependent Types
Example on data types

data Vect : Nat -> Type -> Type where

Nil : Vect Z a

(::) : a -> Vect k a -> Vect (S k) a

data VectSum : Nat -> Nat -> Type where

Nil : VectSum Z Z

(::) : (b : Nat) ->

VectSum k a ->

VectSum (S k) (a + b)

Dependent Types
Example on data types

data Vect : Nat -> Type -> Type where

Nil : Vect Z a

(::) : a -> Vect k a -> Vect (S k) a

data VectSum : Nat -> Nat -> Type where

Nil : VectSum Z Z

(::) : (b : Nat) ->

VectSum k a ->

VectSum (S k) (a + b)

Dependent Types
Example on functions

(++) : Vect n a -> Vect m a -> Vect (n + m) a

(++) Nil ys = ys

(++) (x :: xs) ys = x :: xs ++ ys

vecHead : Vect n a -> so (n > 0) -> a

vecHead (x :: xs) _ = x

vecHead ' : Vect (S n) a -> a

vecHead ' (x :: xs) = x

Dependent Types
Example on functions

(++) : Vect n a -> Vect m a -> Vect (n + m) a

(++) Nil ys = ys

(++) (x :: xs) ys = x :: xs ++ ys

vecHead : Vect n a -> so (n > 0) -> a

vecHead (x :: xs) _ = x

vecHead ' : Vect (S n) a -> a

vecHead ' (x :: xs) = x

Dependent Types
Example on functions

(++) : Vect n a -> Vect m a -> Vect (n + m) a

(++) Nil ys = ys

(++) (x :: xs) ys = x :: xs ++ ys

vecHead : Vect n a -> so (n > 0) -> a

vecHead (x :: xs) _ = x

vecHead ' : Vect (S n) a -> a

vecHead ' (x :: xs) = x

Dependent Types
Examples on Implicit Arguments

vectMap : (A : Type) -> (B : Type)

-> (A -> B)-> Vect n A -> Vect n B

vectMap _ _ f Nil = Nil

vectMap t1 t2 f (x::xs) = f x :: vectMap t1 t2 f

xs

vectMap ' : {A : Type} -> {B : Type}

-> (A -> B)-> Vect n A -> Vect n B

vectMap ' f Nil = Nil

vectMap ' f (x::xs) = f x :: vectMap ' f xs

vectMap '' : (a -> b)-> Vect n a -> Vect n b

vectMap '' f Nil = Nil

vectMap '' f (x::xs) = f x :: vectMap '' f xs

Dependent Types
Examples on Implicit Arguments

vectMap : (A : Type) -> (B : Type)

-> (A -> B)-> Vect n A -> Vect n B

vectMap _ _ f Nil = Nil

vectMap t1 t2 f (x::xs) = f x :: vectMap t1 t2 f

xs

vectMap ' : {A : Type} -> {B : Type}

-> (A -> B)-> Vect n A -> Vect n B

vectMap ' f Nil = Nil

vectMap ' f (x::xs) = f x :: vectMap ' f xs

vectMap '' : (a -> b)-> Vect n a -> Vect n b

vectMap '' f Nil = Nil

vectMap '' f (x::xs) = f x :: vectMap '' f xs

Dependent Types
Examples on Implicit Arguments

vectMap : (A : Type) -> (B : Type)

-> (A -> B)-> Vect n A -> Vect n B

vectMap _ _ f Nil = Nil

vectMap t1 t2 f (x::xs) = f x :: vectMap t1 t2 f

xs

vectMap ' : {A : Type} -> {B : Type}

-> (A -> B)-> Vect n A -> Vect n B

vectMap ' f Nil = Nil

vectMap ' f (x::xs) = f x :: vectMap ' f xs

vectMap '' : (a -> b)-> Vect n a -> Vect n b

vectMap '' f Nil = Nil

vectMap '' f (x::xs) = f x :: vectMap '' f xs

Dependent Types
Examples on Implicit Arguments

vectMap : (A : Type) -> (B : Type)

-> (A -> B)-> Vect n A -> Vect n B

vectMap _ _ f Nil = Nil

vectMap t1 t2 f (x::xs) = f x :: vectMap t1 t2 f

xs

vectMap ' : {A : Type} -> {B : Type}

-> (A -> B)-> Vect n A -> Vect n B

vectMap ' f Nil = Nil

vectMap ' f (x::xs) = f x :: vectMap ' f xs

vectMap '' : (a -> b)-> Vect n a -> Vect n b

vectMap '' f Nil = Nil

vectMap '' f (x::xs) = f x :: vectMap '' f xs

Theorem Proving

data (=) : a -> b -> Type where

refl : x = x

Now some examples...

Theorem Proving

data (=) : a -> b -> Type where

refl : x = x

Now some examples...

Theorem Proving
commands and tactics 1

compute Normalizes all terms in the goal (note: does not
normalize assumptions)

exact Provide a term of the goal type directly

trivial Satisfies the goal using an assumption that matches
its type

intro If your goal is an arrow, turns the left term into an
assumption

intros Exactly like intro, but it operates on all left terms at
once

let Introduces a new assumption; you may use current
assumptions to define the new one

1Idris-wiki,https://github.com/idris-lang/Idris-dev/wiki/Manual

https://github.com/idris-lang/Idris-dev/wiki/Manual

Theorem Proving
commands and tactics 1

rewrite Takes an expression with an equality type (x = y),
and replaces all instances of x in the goal with y. Is
often useful in combination with ’sym’

state Displays the current state of the proof

term Displays the current proof term complete with its
yet-to-be-filled holes

undo Undoes the last tactic

qed Once the interactive theorem prover tells you “No
more goals,” you get to type this in celebration!

1Idris-wiki,https://github.com/idris-lang/Idris-dev/wiki/Manual

https://github.com/idris-lang/Idris-dev/wiki/Manual

